当前位置:100EC>行业研究>浅析:中国制造业的互联网化、数字化、智能化路径探索
浅析:中国制造业的互联网化、数字化、智能化路径探索
发布时间:2019年02月03日 10:08:56

(网经社讯)【编者按】人工智能是产业互联网的核心,而制造业无疑是产业互联网最为重要的应用领域之一。当中国发展进入到新时代,人工智能与制造业的结合,将是中国直面国内外挑战的重要超车机遇。

当中国发展进入新时代,中国也进入由科技和创新驱动的新一轮发展阶段,而人工智能将成为中国新时代科技创新的关键和参与全球竞争的重要砝码。人工智能技术在各行业已经展现出广阔的应用前景,不仅能带来生产效率的提升,还会催生新的产品、模式与公司,推动整个产业价值链的重构。发展人工智能也已经成为国家之间竞争的制高点之一。

从国家发展的长远角度来看,人工智能将对经济、社会、国防等多个领域带来深远影响,成为全球竞合中的重要砝码之一,是不可错过的重要发展机遇。人工智能的争夺是世界未来最主要、最重要的争夺,将决定世界的未来,也会重新撰写和定义中华民族5000年的历史,在这个争夺中,中国没有任何的空间和实践可以犹豫和后退。

中国是世界上最大的制造业大国,制造业与人工智能的结合是中国从制造大国走向制造强国的重要一步,是中国直面国内国际挑战的重要超车机遇。

本文提出“智能制造:中国制造业和人工智能共享共赢的未来”的命题。我们认为,制造业与人工智能的结合是解决中国人口老龄化,制造业由于装备和软硬件平台依赖进口所面临的缺乏创新平台自动化自主程度较低、制造业外移、制造业仍然处于价值链低端, 劳动生产率较低等问题的重要手段。特别在中美贸易摩擦挑战下,制造业亟待人工智能赋能。人工智能等新技术为制造业的发展打开新天地,制造业为人工智能提供巨大的数据养料和落地舞台。沿着数字化、网络化、智能化的智能制造发展路径,一个包括设备企业、软件与服务企业、通信和解决方案提供商、制造业工厂在内的全新产业即将出现。未来智能化的制造业将是中国经济和技术发展的重中之中。

一、中国制造业为中国人工智能发展提供最大的场景

1. 中国是世界最大的制造业大国

今天,中国是世界上最大的制造业大国。 中国之前,全球尚未有任何一个国家能在短短的40年内,实现由农业经济向信息经济的跃迁。改革开放40年来,我国建立了门类齐全的现代工业体系,工业经济的实力迅速壮大并跃升为世界第一制造大国,也是世界上唯一有完整的制造业体系、产品、和产业链的大国。世界银行统计数据显示,2017年中国制造业增加值为3.59万亿美元,占全世界的28.57%,是美国德国制造业增加值的总和,遥遥领先于世界其它国家(图1),并在2016世界制造业竞争力指数排名中(图2)位居榜首。

1549005964230951.jpg

 图1:2002-2017制造业增加值(万亿美元)

数据来源:Worldbank Database,作者

1549006062546549.jpg

图2:世界制造业竞争力指数排名(2016&2020)

数据来源:Deloitte Research:《2016全球制造业竞争力指数分析》,作者

另一方面,制造业在中国产业结构中地位至关重要。2017年美国GDP中第二产业仅占19%,而同期中国第二产业占据GDP的41%、制造业增加值占GDP的29%。相较于世界其他国家,中国制造业在国民经济中的地位和重要性都要高,也为人工智能提供了更大的发展空间。

2. 中国制造业产业结构特性适于人工智能应用

在制造业,低技术含量(第二产业、处理常规/可预测/可编程任务)的工人将首先面临被人工智能替代。中国制造业主要由传统产业驱动、从业者技术要求较低,因此其劳动力可以被自动化的程度整体较高,重复性、规则性、可编程性较高的工作内容将在未来主要由人工智能协同智能化工业机器人完成。基于产业结构和劳动力结构的不同,人工智能替代低技术工人对中国的影响将大于美国。MGI(麦肯锡全球研究所)估计中国51%的工作(约3.94亿全职员工)可以自动化。由此,未来AI对中国经济增长的驱动力将达1.3%左右,高于世界平均水平。

3. 制造业海量数据为人工智能发展提供丰富的“生产资料”

制造业可源源不断产生比消费更为丰富的海量数据,为人工智能发展提供丰富的“生产资料”。根据Monica Rogati 的数据科学需求层次,数据的收集是数据分析、测试、机器学习的基础。仅当拥有足量的数据基础时,机器学习才能够最大程度发挥其效用。三大产业的数据产生频率有所不同,第一产业以一年若干季为周期,服务业以月和日为周期,制造业可以在产线运行、检测、运输、仓储等全过程源源不断产生数据流,为AI时代的计算提供大量的、相对规则的数据资料,助力机器学习进一步的算法优化、提高预测准确度。

4. 制造业与服务业相融合、构筑新的产业

今天,产业互联网已经超越ToB、ToG范畴,未来将以独特的C2B方式连接智能产业,帮助B端打通生产制造、消费服务的价值链,构筑新的“服务产业、也服务于人”的新型制造业服务业。未来将不再有纯粹的“制造业”或纯粹的“服务业”,而是两者深度融合,制造业将从现在的标准化、规模化增添个性化与定制化的服务属性。伴随工业智能化的进一步推进,最终有望实现定制化用户个性需求。物联网拥有“无界、无价、无序”的本质,通过建立自驱动的非线性网络,有望实现“用户零距离、流程零签字、体验零延误”。高端智造的核心不止步于生产高端产品,而可进一步延伸至为用户提供高端服务,满足用户的个性化需求。依托智能化与高效率的定制美好生活平台,或成为全球产业的下一个风口。

二、人工智能赋能中国制造业克服挑战

尽管中国是世界第一制造业大国和“世界工厂”,但中国制造业仍然处于国际分工中价值链相对低端的位置,面临着生产率增速下降、技术学习难度加大,人口红利消失,制造业外移和国际环境的外部冲击的根本性挑战。随着我国经济发展逐渐步入工业化后期,需求拉动对制造业资源配置和效率提升的效应正不断弱化;从技术层面看,我国传统产业中的高端生产装备和核心零部件技术长期受制于人,技术竞争力差距大;而新兴技术和产业领域全球竞争的制高点掌控不足;在全球产业结构调整中,我国制造业增长更多依赖于来自发达国家的制造业转移。在此背景下,在新一轮“制造业+人工智能”的竞争中把握好机遇,以人工智能技术的连接、融合功能引发传统制造业产业形态的平台化、网络化和深度服务化,对于我国制造业的转型升级和提升国际竞争力有着重要意义。

1. 人工智能提升制造业劳动生产率

从国际比较视角看,中国的单位劳动产出较低。2015年,世界平均单位劳动产出为18,487美元,中国是7,318美元,不及全球平均水平的40%。 伴随中国产业结构升级、劳动素质提升及对外开放程度的提高,中国单位劳动产出实现过两位数的增长,缩小了和发达国家的差距,但2010年至今中国单位劳动产出增长速度下降到6-7%区间。以高新技术接力赋能增长、提高中国劳动生产率时不我待。

2. 人工智能帮助制造业直面人口老龄化的挑战

中国正面临人口老龄化的挑战,就业倾向制造业适龄人口未来快速减少。2011年中国出现“人口红利”拐点,之后青年劳动力人口占比继续下降, 已从从2011年的50%,下降到2016年的46%。根据国务院《国家人口发展规划(2016—2030年)》,14-45岁人口占比到2030年将下降到32%,适龄人口减少对未来制造业的发展将产生持续影响。同时,“90后”和“00后”以后的年轻人对从事简单重复劳动的意愿较低,中国制造业已经出现员工稳定性下降的趋势。人工智能会为员工创造从普通操作工人向操作机器人的工程师等行业专家发展的更大的成长空间,也为企业的持续发展创造动力。

1549006251682785.jpg

图 3: 中国青壮年(20-44)人口占比自2011年下降

数据来源:国家统计局,美国经济分析局,作者

3. 人工智能创新可减少制造业的海外依赖

我国企业运用的自动化设备及技术仍然依赖美德日企业。虽然中国企业在规模上超过美德日,但产品设计和生产所需的自动化装备、方法论和软硬件平台上,目前还主要依靠西门子、GE、三菱等美德日企业。人工智能、大数据等新技术兴起,为制造业自主化的进一步升级提供了可能性。工业互联网提供了大数据信息处理,机器视觉信息获取,低延迟工业级信息传输等功能,这些功能对生产、运输、检测环节带来新的生产力,为先进装备的创新和发展提供了新的契机。

4. 解决产业向第三方发展中国家转移的挑战

以人工智能解决中国制造业因劳动成本上升等引起的产业向第三方发展中国家转移的挑战。近年来伴随中国人力、土地、环保、社保等成本端的提升,以及中美贸易摩擦带来的挑战,中国低端制造业出现向印度、越南等低成本国家的外迁趋势。以电子产业链为例,近几十年来,全球化的电子产业沿欧美日本韩国/中国台湾→中国内地转移,现在部分开始从中国转移至印度/越南等低成本国家。采用人工智能自动化、优化成本控制的企业才能能在产业迁移的过程中胜出。

5. 人工智能赋能制造业全面提升企业经营效益

中国制造业普遍面临利润空间狭窄的挑战。人工智能可以从产品、服务和生产三个维度帮助制造业企业实现升级,提升企业营收和利润。

产品方面:软件赋能硬件的智能升级。通过内置新操作系统或更新程序,将人工智能算法嵌入产品中,如机械、汽车等,从而帮助制造业企业生产全新的智能化产品。如腾讯人工智能开放平台对外提供计算机视觉,帮助制造业企业实现产品升级。

服务方面:提高营销能力和售后服务水平。利用人工智能算法,帮助制造业企业优化营销能力,提升售后服务水平。1)售前营销,通过人工智能分析用户画像,判断重点需求,从而进行更实时、精准的广告投放;2)售后服务,以物联网、大数据和人工智能算法,对产品进行实时监测、管理和风险预警。

生产方面:提升设备自动化生产能力。将人工智能技术嵌入生产过程,提升机器设备的自动化水平,实现在复杂情况下的自主生产,从而全面提升生产效率。通过机器学习建立产品的生产模型,识别各制造环节参数,判断其对最终产品质量的影响,通过深度学习自主判断最佳参数,从而实现完全机器自主的生产。

三、企业发展智能制造的路径

制造业智能化实现路径:在数字化、网络化、智能化的相互递进与配合下,企业转型智能工厂、跨企业价值链延伸、全行业生态构建与优化配置将有望得以实现。

首先,数字化。通过将种类繁多的工业传感器布置于生产与流通的各个部分,可以将工业过程各主要参数制式数字化,产生大量工业数据,为智能化奠定数据基础。

其次,网络化。工业通信将传感器采集到的工业数据低延迟、低丢包率地传输至云端。未来,通信协议标准化、无线通信技术应用将成为趋势。工业云是工业互联网最核心的部分,进行海量数据的汇聚、提炼、模型计算等,实现资源优化与预测。

最终,实现智能化。依托区块链和图像、语音、机器学习等人工智能技术,制造业企业得以在网络化的基础上进一步实现智能化,如依托区块链技术进行供应链管理、依托图像技术进行自动光学检测和仓储机器人的使用、依托语音技术进行物流语音拣选、依托机器学习进行预测性维护和车货匹配等。

1549006360729569.jpg

图 4 : 人工智能如何改变制造业

资料来源:工信部,作者

因此,企业制造业智能化转型也可以分为数字化、网络化、智能化三步。在数字化、网络化、智能化的相互递进与配合下,企业转型智能工厂、跨企业价值链延伸、全行业生态构建与优化配置将有望得以实现。

1、第一步:数字化——“感受”工业过程,采集海量数据

(1) 为配合工业智能化、实现智能制造,制造业工厂在进行数字化、网络化、智能化的软硬件应用之前,更为基础的是在生产流程上打通设计、生产、检测、搬运、仓储、配送等主要环节,高效、科学的生产流程设计蕴含着巨大的提质增效、降本减存的机会。

(2) 工业传感器:工业数据的“采集感官”,多类别、广应用为智能化奠基

人工智能的基础是大量的数据,而工业传感器是获得多维工业数据的感官。除了设备状态信息以外,人工智能平台需要收集工作环境(如温度湿度)、原材料的良率、辅料的使用情况等相关信息,用以预测未来的趋势。这就需要部署更多类别和数量的传感器。如今,使用数量较多的传感器包括压力、位移、加速度、角速度、温度、湿度和气体传感器等。现在的工业传感器可以提供监视输出信号、为预测设备故障作出数据支持,可以助于确认库存中可用的原材料,可代替指示表更精确地读数以及在环境恶劣的情况下收集数据、亦可监测通过网关和云的数据传输、维护数据安全等。

2、第二步:网络化——高速传输、云端计算、互联互通

(1)工业通信:数据上云的“高速公路”,通信标准化、无线通信技术应用成趋势

得到大量数据后,如何将数据传输至云端呢?这需要依托先进的工业级通信技术。和过去在车间内直接对数据进行简单响应不同,企业需要把不同车间,不同工厂,不同时间的数据汇聚到同一个地方(云数据中心),进行复杂的数据计算,以提炼出有用的数学模型。这就对工业通信网络架构提出新要求,推动标准化通信协议及5G等新的技术在车间里的普及。

(2)工业云:汇聚提炼海量数据,模型计算资源优化的场所

人工智能进行计算的场所——云平台。工业互联网最有意义的部分是其云计算平台。工业生产中产生的海量数据将与工业云平台相连,采用分布式架构进行分布式数据挖掘,提炼有效生产改进信息,最终将用于预测性维护等领域。在云平台上首先打通数据流和物流,在云上汇聚工厂内部的不同维度、产品生命周期不同阶段、供应链上下游不同行为主体。其次可以通过运用大数据及人工智能技术进行分析,提炼数字分析模型。

制造业智能化及工业互联网具有不同层面的应用场景。首先,在企业层面主要是内部的提质增效,降本减存,从传统制造进化为智能工厂,以数据驱动智能生产能力。其次,可实现跨企业价值链延伸,优化跨企业的制造资源配置,打通企业外部价值链。最后,有望实现全行业生态构建,以数据驱动生态运营能力,汇聚协作企业、产品、用户等产业链资源,不断沉淀、复用、重构和输出,实现制造行业整体的资源优化配置。

3、第三步:智能化——三个维度的整体智能化

三个维度打通工业企业的数据流(工厂平台架构,产品生命周期,供应链)

图5:三个维度打通工业企业的数据流(工厂平台架构,产品生命周期,供应链)

资料来源:工信部,作者

(1)融合IT/OT,打通工厂内部的数据流

过去传统的制造业工厂的内部存在信息系统(IT)和生产管理系统(OT)两个相对独立的子系统。IT系统生产规划,OT负责执行,不需要过多的互动。未来的智能工厂,需要打通设备,数据采集,企业IT系统,云平台等不同层的信息壁垒,实现从车间到决策层的纵向互联。

(2)打通供应链各个环节数据流

供应链各个环节之间的物流会产生大量的数据。这些物流信息的收集能够帮助物流行业提升效率,降低成本。未来的智慧物流,通过智能化收集、集成、处理物流的采购、运输、仓储、包装、装卸搬运、流通、配送等各个环节的信息,实现全面分析,及时处理及自我调整。这需要涉及到将这些数据数字化并累积成足够的数据库,需要大量的基础设施建设。

(3)产品生命周期全过程数字化

工业互联网要实现产品从设计、制造到服务,再到报废回收再利用整个生命周期的互联。未来的工厂会以数字化方式为物理对象创建虚拟模型,来模拟其在现实环境中的行为。通过搭建整合制造流程的数字双胞胎生产系统,能实现从产品设计、生产计划到制造执行的全过程数字化,将产品创新、制造效率和有效性水平提升至一个新的高度。

四、未来智能化的制造业畅想

在人工智能、工业机器人、工业互联网、区块链等多种技术赋能下,未来智能化的制造业将值得畅想。短期人工智能与工业机器人的落地将解放大量重复、规则的人类劳动。工业互联网日益成熟,机器之间、工厂之间得以智能化互联互通,区块链技术的加入更使得制造业“全自动运行”成为可能,“人工智能+机器人+区块链”模式值得期待。而伴随制造业与服务业将深度融合,标准化生产与个性化定制并存,智能制造将为人们构筑美好生活。相信在数字化、网络化、智能化的相互递进与配合下,企业转型智能工厂、跨企业价值链延伸、全行业生态构建与优化配置将有望得以实现,制造业的深度智能化将不再仅存在于愿景。

未来10-15年内,50%的制造业将会被人工智能取代,中国的主导产业将发生天翻地覆的变化,并且面临国内外企业的新一轮冲击。面临人工智能时代全新的竞争环境,中国必须迎难而上,从当下开始打造人工智能生态,为未来全方位跟进时代浪潮打下深厚基础。新时代下,人工智能发展的规模之大、速度之快、在国际竞合中地位之高,决定了中国需要进一步改革开放,以改革政策带来的制度创新的力量促进人工智能快速发展,占据技术制高点,并形成国际竞争力。

制造业+人工智能已成为中美等国制造业竞争的主赛道之一。美国拥有人工智能先发优势、领先工业制造商基础以及资金优势。中国需要在人工智能的成熟度和行业整合上取得突破,这种背景下,能够率先建立工业互联网技术基础、并顺利将其应用和大规模铺设至智能工厂、先进制造装备等领域的国家,无疑将在全球制造业竞争中占据优势地位。2018年11月19日美国商务部发布题目为《Review of Controls for Certain Emerging Technologies》的法规制定提案预告(Advance notice of proposed rulemaking,ANPRM),如提案落实,众多高新科技行业将面临美国出口与技术封锁,为已经面临人口结构、自动化自主程度较低、进口依赖的中国制造业的进一步升级造成额外阻碍。历史阶段与国际环境挑战下,中国的制造业亟待AI赋能。

但是,人工智能这轮变革是中国和世界第一次站在同一个起点上,在人工智能的竞争中,中国第一次有了资本、人才和技术去把握未来。中国实现“弯道超车”有四大信心和条件。

一是用户基数与市场潜力。中国有近14亿用户,形成了巨大而多样化的市场,为人工智能的发展应用提供了充足的空间。特别是中国今年来互联网与移动应用和商业模式迅速发展,在很多领域已经超越了美国等发达市场的发展水平,结合巨大的用户基数产生了规模巨大而差异化的数据集,为人工智能的应用提供了最佳基础。

二是技术差距逐渐缩小。近年来中国在技术上发展迅速,国际顶级会议论文中,出现中国作者名字的占三分之一以上。海外科技人员归国创业的热潮明显,人才回流现象加强。此外,中国在超级计算机方面的潜力巨大,为技术的发展提供了加速支持。2017年,超级计算机五百强榜单显示中国已超过美国,成为世界上拥有最快超级计算机、且数量最多的国家。

三是创新能力的提升。“中国创造”已成大势所趋,时下流行的商业模式中有诸多为中国首创,例如共享单车、移动支付、直播、手机短视频等,成为海外市场研究与效仿的对象。

四是资本力量充裕。一方面政府将创新提升至战略层面,高科技领域的政府引导基金可达到千亿、万亿的级别。另一方面大量民间资本渴望找到成长性高的投资机会。据Pitchbook调查,2018中国人工智能领域的投融资已占到全球所有人工智能投融资总额的12%,且其占比仍保持迅速上升趋势。基于以上四方面原因,中国有望在智能制造领域,百尺竿头更进一步,从“世界领先”走向“世界第一”。

中国近年出台多项政策鼓励智能制造及互联网、新兴技术于制造业的应用结合,然而我们需要清醒认识到政策与制度层面、人才与环境层面仍存在落地困难。未来,伴随中国制造业转型升级意识的增强,人工智能、新兴技术与制造业应用进展的进一步推进,以及相关行业、企业、政府三大层面的政策引领作用的提升,一个自动高效、互联互通、具备前瞻预测能力的智能制造时代将早日到来。(来源:腾讯研究院 文/清华大学国家金融研究院院长朱民 黄乐平 编选:网经社-电子商务研究中心)

浙江网经社信息科技公司拥有17年历史,作为中国领先的数字经济新媒体、服务商,提供“媒体+智库”、“会员+孵化”服务;(1)面向电商平台、头部服务商等PR条线提供媒体传播服务;(2)面向各类企事业单位、政府部门、培训机构、电商平台等提供智库服务;(3)面向各类电商渠道方、品牌方、商家、供应链公司等提供“千电万商”生态圈服务;(4)面向各类初创公司提供创业孵化器服务。

网经社“电数宝”电商大数据库(DATA.100EC.CN,免费注册体验全库)基于电商行业17年沉淀,包含100+上市公司、新三板公司数据,150+独角兽、200+千里马公司数据,4000+起投融资数据以及10万+互联网APP数据,全面覆盖“头部+腰部+长尾”电商,旨在通过数据可视化形式帮助了解电商行业,挖掘行业市场潜力,助力企业决策,做电商人研究、决策的“好参谋”。

【投诉曝光】 更多>

【版权声明】秉承互联网开放、包容的精神,网经社欢迎各方(自)媒体、机构转载、引用我们原创内容,但要严格注明来源网经社;同时,我们倡导尊重与保护知识产权,如发现本站文章存在版权问题,烦请将版权疑问、授权证明、版权证明、联系方式等,发邮件至NEWS@netsun.com,我们将第一时间核实、处理。

        平台名称
        平台回复率
        回复时效性
        用户满意度
        微信公众号
        微信二维码 打开微信“扫一扫”
        微信小程序
        小程序二维码 打开微信“扫一扫”